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Considered Is the space motion optimization problem for a two-stage rocket 
In a homogeneous parallel force field [l and 23. The thrust of the power- 
plants of both stages 1s considered limited. The results of [3] are utilized 
In the solution. 

1. box'mul&tion ot tlr, px’oblein, The equations of motion of a two-stage 
rocket in a homogeneous parallel force field can be expressed in the form 
E4 and 5? 

"+' -. ,+p+ -f_?+ -@, 

v-'iz e-_gk, 

r+' zz \'+ Alo"= - i3+, e+.e+ = 1 (1.1) 

r-' : v-, fir,-. = -p-, e-.e-= 1 (1.11) 
0 

Here I is the radius vector, V the velocity vector, Me the mass of 
the rocket, the efflux velocity, 
field forces &it vector, 

0 the thrust unit vector, k the 
@ the gravitational accrleration. The "plus" 

sign refers to the first stage, while the "minus" refers to the second 
stage. 

Equations (1.1) are valid in the range of the inequality 

MO+ (t)>, MI (1.3) 

where M,. Is the rocket mass at the first-stage burnout instant t = tl . 
Equations (1.2) describe the motion of the second stage of the rocket. It 
satisfies the Inequality 

M- (t) < M, - M, (1.4) 

where H, is the "dry" mass of the first stage C61. The B parameter is 
regarded as bounded. The Intervals of Its permisslble variations are given 
by the lnequalitles 

BY- \ r-' ~/0-I.<&+ (1.5) 

Boundary values of Cl+ and aa* can differ from B1- and Se-. 

The optimization problem is formulated as follows. 

It is required to find among the continuous functions r(t), V(C)t M(t) 
and the piecewise continuous parameters a(t), o(t), satisfying the Inequal- 
ities (1.5), gquations (l.l), (1.2) In the Interval t,,<t<d and the rela- 
tionships 

~~ [r(to), v(ttt), ill (to), r (I'), v(T), M (Tf, to, T] = 0 (I = 1, . . , p < 15) (W 
at the e&s of the interval, such functions which minimize the functional 

J = J ]r (tn), Y (to), M(tn). to, r(T), v(7'), .If (IX 'i'l (1.7) 

Let us introduce a new variable M(t) by the relations 
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M+ rt) = MO+ (t), M- (t) = MO-(t) + M, (I.81 
Then Equations (1.1) and (1.2) become 

,+p+ 
g,+ = v+'+ if e+ + gk = 0, gr+ = r+'-v+ = 0 

g,+ = iw+* + p+ = 0, qe+ =e +.e+-_l =_O 
(Mj 

g,- =v-'-- 
c-p- 

M---Me -gk=O, g,- = r-’ -v-=0 

g,- = M-’ $- py = 0, $R-=e-.e---l =0 
(1.10) 

and will be discontinuous in the right-hand side for t - tl, when the rela- 
tionship 6 = X (tl) - M, = 0 is fulfilled. Let us construct the auxiliary 
relationships 

$* = (P'-~P1')(pa*-~*)-(U*)a =o (1.11) 

Here U* are auxiliary controls. Following this the optimization problem. 
of the motion regimes for a two-stage rocket can be formulated in the follow- 
ing manner. 

It is required to find among the continuous functions F(t) , v(t) , v(t) 
and the piecewise continuous controls s(t) , a(t) , u(t) , satisfying Equa- 
tlons (1.9) to (1.11) In the Interval to< t<T and the relationships (1.6) 
at its ends, such functions which mlnimlze the functional (1.7). 

In this formulation the problem Is a particular case of the problem inves- 
Gigated In 13) In a general problem of optimizing the control processes In 
the systems described by differential equations with discontinuous right-hand 
sides. 

2. Oorutruotion of tha l qu8tion8 ior tha vrri8tloaal problem. Following 
the rules given In [3], we construct the functions y and QY . They become 

H+ = H,,+ + H,A+ = I,+. 
c+p+ 

~+e+ -gk + X,+v+- h,+P++ Pe+ (e+.e+ - 1) -I 

+ pLp+ l(B’ - Pl’) (Pz+ - a+) - (u+Yl (2.1) 

H- = H,- f HP- = 1,-. 
t 
,“-~-, e- - gk) + h,-.v- - n,p- + PLe- (e-se- - 1) 9 

+ pLp- ((i- ” PI-) (ba- - P-1 - (u-19 (2.2) 

cp=JS 5 Pl'P[ (2.3) 
I=1 

By utilizing Formulas (2.13) and (2.14) of the paper [3], we find Equa- 
tions 

(2.4) 

l++1+=0 3*+*=0 c+p+ 
U r ’ r 

) A,+‘- (;b; +a L,+.e+ =C, M+ ku+ + 2pe+e+ = 0 

&5,+.e+--kh,+ - pp.+ (2p+ - PI’ - a%+) = 0, pfi+u+ = 0 (2.5) 

",-'+$-=o, 1,-' = 0, L-‘-((M-c!MC)Z J.-.e-= u (2.6) 

MC!-M lv-+2Pce-e- = 0 
C 

C- 
M- - M,- 5,-.e- - ha- - pLB- (2p- - pl- - pz-) = 0, pLp-u- = o (2.7) 

With the aid of the relations (2.16) and (2.22) of [33 we construct the 
.%..A rr..rl4+,rra 
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Finally, Formulae (2.17) and (2.33) of [3] lead to the following Erdmann- 
Weieratrass conditions: 

x,+(11)-k,-(h) = 0, q.+ (h) - lc-(tl) = 0, >b.rc+ (h) - x,,- (h-i Y = n, (~10) 

(IT+),,- ('i-)1, = 0 (2.11) 

We also note that the problem equations do not contain time explicitly, 
and that there exists the first Integral 

IS = h = const (2.12) 

In the optimum regime there must also be fulfilled the Inequality, 

In which 

rl- - nr- T nr, a,,-.e- - h.,,, v- = jj7=-&-q h,,-.e*‘- - h,,, (2.14) 

and l * , 6* correspond to the optimum regime, while o+f and fl*f: are any 

‘I 
ermlsslble functions. The Inequality (2.13) was derived from the relation 
3.4) of [3 

Equalities 2.1) and (2.2). t 
after substitution In It of the function R represented by 

3 Ooaatruo$lor& ot &a opt&&m rm. Let UB consider Formulas (2.5) 
and (2.7). They show that the vectors X, and 0 are parallel and they 
lead to the conclusion that ln the optimum regime the following systems of 
dependences can be fulfilled: 

1. t$==o, u#O; 2. t$#O, u==o; 3. &==U==O 

The second equalities of (2.5) and (2.7) permit to verify that for the 
case p - 0 the corresponding 
Is fulkled. 

II = 0, and for pLp # 0 the Inequality ~1 + 0 

Let us refer to the inequality (2.13). Noting that the futXtiOn ?J*= rl 
Is permlsslble we substltue it Into the Inequality. This results In the 
relationship $),T$* . 

Consequently, for n # 0 , we get 

p* = 
i 

p? for +<0 

32% for q’>O 

The following relationships correspond to two other cases: 

1. .pl*<<*<pz*; ‘. q* =o; 3. $* =p& vl* =o 

Forqjq*, p=p* we fina Q>),* or, 

$i,+.e+>&+5,+.e*+, 
c- 

$I- - M c 
I,-.e- >, M_ 1 M’, k,-.e*- 

The a&tyels of these inequalities shows that In the optimum regime 

(3.1) 

(3.2) 

the 
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vectors A, and e are eodirectlonal so that 

&:= = &,.-trek (3.3) 

where I,* are the lengths of the vectors XV* . 
With the aid of the conditions (2.10) and (2.11) we find that the vector 

multipliers X (t) and x,(t) and the function R are continuous in the 
entire inter& to< t < T. The multipl%er h,,,(t) and the function n can 
have the first kind of d~s~ont~u~ty at the point t = tl. 

Substituting Into the equality (2.11) Expressions (2.1) and (2.2) there 
results the relationship 

?l+ (tl) 8’. (tl) = tl- (tl) s- fti) {Xi) 

Since B*> 0 , the values of n+ (f,) and n- ( 
the point t - tz there ia no ch 8nfe 
8” (tl) - ga’while for B+ (ti ) - B, 

of regimes 
we will get 

Let us examine the case of given initial and final positions of the rocket 
by the relations 

r (0) = r”, v (0) = VO, M (0) = M”, to = (0) (3.5) 

The J functional is 
r(T) r= rr, 

J=J[M(T), T] (3.7) 
The cp fun&ion is represented by the equality 

cp = J + pro 0 (0) - r’) + pyo (v (0) - W- Pnl (lw (0) - M”) i- 

-t Pt to -+ Pr (I: (V -rqi_ p~(v(T)-Gj 

The first group of rilationships 

(3.8) 

in (2.8) and the first funation in (2.9) 
derive Formulas 

X,(O) = Pr"r hJ(O) = ho, J.,(O) = P.&C, (W[, = - Pt, (3.9) 

SO that instead of seeking the multipliers Pros PC’, P,N’* Pt, we can compute 
the Mtial values of the corresponding functions. 

On the basis of the second group of oonditions in (2.8) and the second 
equality In (2.9) we get 

1, (T) = - Pry &l(T) = - PV 
Integrating Equations (2.4) and (2.6) with these relationships taken into 

account, we will obtain 

1,* (4 = - Pr, &’ tt) = Pr tt - T, - Po 
Let us aonstruct now the derivative n* and find 

The substitution of x,*(t) into these expreselons yields 

II” = - &[&..p.--Pr~(t-T)l, 
u 

q-.==-(lr_c;,)E, _IP,*Pc--P?3+-~)~ 
z' 

Here pr ia the length of the vector B, , and 
(3.11) 

‘A,== Y-P&--2p,~p,(t-T)+ pra(t--T)2 

Formu.laa‘(3.ll) show that for p,# 0 the derivative n* cannot have more 
than one sero in the interval t, < t < T. If n’- 0 and TJ I 0 , then at the 
nslghboring points q f 0 l Therefore, the fun&Son n can become zero at 
a finite number of’ points in the interval to< t<T; at all other points it 
is nonsero. 

Since the left and right regions of the function q at 8 point t - cl 
have the aam B&~B end Its derivative has no more than a single sero, the 
function n itself oan have no more thsn two zeros. TM&, in spcciiJriag 
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the end values bs the equalities (3.5) and (3.6), the control parameter in 
the Optimum regime can assume only Its boundary values g*= B f , or B*= se*. 
The chanSe of the regime, i.e. the change of the control parakter from 
e - 9, to 8 - Bs or COnVersely can occur only when n I 0 . There can be 
no more than two corresponding instants of time. In addition, there 2s a point 
of discontinuity t - t, In the right-hand parts of the equations of motion 
where the Control parameter changes from B1+ to E,' or from By+ to se-. 

4 I VoTtrtoal WrlrleM of thr rookrt, In the absence of drag the equations 
for the vertical motion of the rocket are 

(4.1) 
zL.i-' _ c+p+ ~ +g=o, -kg==& 24*_w‘fr__o, j@+p'=o 

c 
Here z is the vertical coordinate, w the vertical velocity. The end 

conditions wlll be specified by 

I fO)= 9, w(o)=w=, M(O)=.: -II", 'pz = s (I') - zT =o f4.2) 

We will consider the problem of fuel consumption mlnlmlzation. Then 

.7= -%(Tf j&3) 
Utilizing the above derived functions we obtain Equations 

and the end conditions for the h multipliers 

&,(I') = -pp79 h,, (7’) = 0, IV.!, (T) = 1 (5.5) 

In addition, there will exist the equality (ii),.-= 0. For the ni function8 
we get 

n+ -= _c-' _ 3,,+ - A,,+, 'j- 
iv+ 

11'. = 
.ci - ,II, 

iyl,,- - h -_ bl {LS) 

and the Welerstrass Inequality will be of the form (@)-- ,>(T)3*)4z 

The derivatives n' are 

The Erdmann-Weierstrass conditions for the point of discontinuity in the 
right-hand part of the equations of motion are expressed as follows: 

h,+ (k)- h,- (k) = 0, h; (t,) - &- (tl) = 0 
(4.8) 

h,‘+ (Ll) - h,- (tl) + v = 0, (II+),, - (Q = 0 

The corresponding condltlons for the points of dlscontlnulty of the con- 
trol paramaters are equivale.nt to the requirement of continuity for the 
multipliers hLft), h,,>(i), 2,,,,(t) and the function B . 

Integrating Equations (4.4) under the conditions (4.5), there result8 

h, = - f?zt h,=-pp,(t-T) (&.9} 

Substltutlng jr into the formula for n',.we see that this derivatdve 
does not change algn In the Interval to< t d T. Coni3eCIUentlY, the q funcc 
tlon cannot have more than one zero in this interval. At all @@REP pa%@ 
we will have q f 0 _ For 6 -= t*, (q (I*) = 0) the change of regfae8 OEOUl?B. 

Let us examine the right end of the optlmUm trajectory. Substituting 
t I 2' into the second formula in (4.6) end utllleing the equdlitlhs (4.4) 
We get 

rl-9T)=-~h,“fT)=_* <c (4.10) 
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Therefore, the optimum regime ends when 

$'(r)=pl' (5.11) 

The second characteristic of the right end of the trajectory 1s found 
with the aid of the equality ,q I 0 . Substituting t - T into It we get 

(H'),=?",'(T)w'(T)-?"(T)=O, or ‘&(T)=-_ 
8, 

For &' = 0 the above derived results simpliiy and yield the relatlon- 
ships fi' (T) = o, W'(T) = o. 

For two-stage rockets of this type there can be the following optimum 
regimes: 

(4.12) 

Pz+ (OGttfl) 
p = pz- (tl< t < t*) (4.13) 

0 (t* <t < T) 

!l!he first one corresponds to the case when the delivery of the rocket to 
the given height z (T) = zT with velocity w(T) - 0 can be achieved wleh 
the aid of the first stage fuel supply; 
the second stage. 

the second uses the powerplant of 

The optimum regimes can be constructed without determining the Lagrange 
multlplers. This requires finding the solution of the equations of motion 
for the values of 0 given by the relations (4.12) or (4.13) such that for 
t = T the equalities z(T) = ~1’ and w(T) = 0 would be satisfied. 
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