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Consldered 1s the space motion optimization problem for a two-stage rocket

in a homogeneous parallel force field [1 and 2], The thrust of the power-
plants of both stages 1s considered limited. The results of [3] are utilized
in the solution.

1. Pormulation of the problem. The equations of motion of a two-stage
{gcket in & homogeneous parallel force field can be expressed in the form
and 51

vt = o + + eyt o + R

= . © gk, rt e vt Myt = - 3%, em-et =1 {1.1)
.8 . .

Vi=groe—gk,  rT=ye, MyT=—f7, enem =1 (1.2)

Here r 1is the radius vector, Vv the veloclty vector, w, the mass of
the rocket, ,» the efflux velocity, e the thrust unit vector, Kk the
field forces unit vector, ¢ the gravitational accrleration. The "plus”
sign refers to the first stage, while the "minus” refers to the second
stage.

Equations (1.1) are valid in the range of the inequality

Myt (t)}.M; (13)

where M, 1is the rocket mass at the first-stage burnout instant ¢ = ¢, .
Equations (1.2) describe the motion of the second stage of the rocket. It

satisfles the inequalit
y M) << M — M, (1.4)

where M, is the "dry" mass of the first stage [6]. The g parameter is
regarded as bounded. The intervals of 1ts permissible variations are given

by the inequalities " . "
v PRENEN (1-5)

Boundary values of 8,% and 8,* can differ from g,” and B8, .
The optimization problem is formulated as follows.

It is required to find among the continuous functions wv(¢), v(z), ¥#(2)
and the plecewise continuous parameters g(t), o(¢), satisfying the inequal-
ities (1.5), Equations (1.1), (1.2) in the interval 1, < ¢t <(7 and the rela-
tionships

q}[r(m),v(aa,Al(m),r(lj,v(?ﬁ,ﬁl(?ﬁ§tm Tl]=0 {({=1,...,p<<1}) (1.6}
at the ends of the interval, such functions which minimize the functional
J=JUWLVWLMUMer@%VUW4”T%Tl (1.7)

Let us introduce a new variable M(t) by the relatlons
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M*(t) = Mot (2), M-(t)=Mq(t)+ M, (1.8)
Then Equations (1.1) and (1.2) become
B
g,"=v"+ 5 e +gk=0, gr=r"—vt=0 (1.9)
g, =M"48"=0, Pptr=e" et —1=0
8=V —ir e —k=0 g =ri—v=0 (1.10)
g, =M +B8 =0, Y- =e-e"—1=0

and will be discontinuous in the right-hand side for ¢ = t,, when the rela-
tionship & = M (4,) — M, = 0 is fulfilled. Let us construct the auxiliary

relationships %i — (B —Bi7) (Bs% —BE) — (u) =0 (1.14)
N f

Here 1y~ are auxiliary controls. Following this the optimization problem
of the motion regimes for a two-stage rocket can be formulated in the follow-
ing manner.

It is required to find among the continuous functions o(t) , v(t) , w(t)
and the plecewlse continuous controls g(t) , e(z) , u(t) , satisfying Equa-
tions (1.9) to (1.11) in the interval ¢, <C¢<C7 and the relationships (1.6)
at 1ts ends, such functions which minimize the functional (1.7).

In this formulation the problem is a particular case of the problem inves-
vigated in [3] in a general problem of optimizing the control processes in
the systems described by differentlal equations with discontinuous right-hand
sldes.

2, Oonstruotion of the equations for the variational problem. Following
the rules given in [3], we construct the functions 7 and o . They become

ctBt
Ht=H,*+H* = At ( e et — gk) + A vt — A BT 4t (e-et — 1) +
+ pgt 1B — Br*) (Be* — BF) — (u)?] 2.1
H-=H,"+H,-~=\"" (J——W_C —E—M e — gk) + A, v — A, B+, (ee — 1)
Fpg (B —B1) (Ba —B7) — (w7)) (2.2)
P
=7+ o (2.3)
=1

By utilizing Formulas (2.13) and (2.14) of the paper [3], we find Equa-
tions (2.4)

ALY AP =0 A+ + ctp +.e+ Y
o FHrF=0, S =0, A, —-—le -et =(, Wl.v*—l-Z}Le*e“::O
+

(4
T MO At — g (2B — Bt —Bat) =0,  pgtut=0 (2.5)

_ - - - cB-
A4 =0, A =0, A, — =M A, em =0 (2.6)
[+
B _ o
M’—Mc’"v +2p,7e” =0

[4

M_"—-—IWC" Aem—A, T — Bg” (2B~ —B1"—B2) =0, Wgum =0 (2.7)
With the aid of the relations (2.16) and (2.22) of [3] we construct the

anA AAnAd+EL Aane



886 V.A.Troitskil

___?_(f__ o ag
) =Gy e MO =T Rl )
%9 99 . o
WO =—gmy e WO = =gy WO =g 29
and the functions P )
= — () 2%y, .4
dto ty T 1 —-

Finally, Formulas (2.17) and {2.33) of [3] lead to the following Erdmann-
Welerstrass conditions:

ML) —h () =0,  AS(t)—h (m)=0, k() —h,(0) v =0 (210)
(H*), — (H), =0 (2.11)

We also note that the problem equations do not contain time explicitly,
and that there exists the first integral

H = h = const (2.12)
In the optimum regime there must also be fulfilled the inequality
(MB)F = (n*B*)* (2.13)
in which
ot B ) a R
n" = ﬂ? }"v‘ et — ;\’M' , .n*+ —_ e ;‘v+'e*+ . 7VM'
- c - e ¢~ N - _
K vy 7 L N = T M e (2.14)
c

and e* , s* correspond to the optimum regime, while €** and g* are any
ermissible functions. The inequality (2.13) was derived from the relation
?3.4) of [31 after substitution in it of the function # represented by
Equalities (2.1) and (2.2).

3, Oonstruotion of the optimum regime. Let us consider Formulas (2.5)
and 12.7). They show that the vectors 1\, and ¢ are parallel and they
lead to the conclusion that in the optimum regime the following systems of
dependences can be fulfilled:

1. =0, u=0 2. pg#0, u =0, 3. pg=u=0

The second equalities of (2.5) and (2.7) permit to verify that for the
case fg = 0 the corresponding n = 0, and for U = 0 the inequality -0
is rulgilled.

Let us refer to the inequality (2.13). Noting that the function n*s n
is permissible we substitue it into the inequellty. This results in the
relationship 7B > np* .

Consequently, for n # O , we get
-+ +
3= :{ 314 for TIL<0 (3.1)
32 for = >0
The following relationships correspond to two other cases:

1, Bt < BT < Bot; 2. nF =0; 3. Bt =B, 1 =0

For 1 1%, B=03* we fina n>n* or,
€ et dtert T e > ke (32
W’A\.I; e >M_+M ext, T Ay e >M'-—Mc v (3.2)
The analysis of these inequalitles shows that in the optimum regime the
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vectors A, and € are codirectional so that
)’2\:': — 7\.,:—:0: (33)
where 1,F are the lengths of the veetors A% .

With the aid of the conditions (2,10) and (2.11) we find that the vector
multipliers A (z) and 1,(z) and the function #» are continuous in the
entire interval zo<<t<C7. The miltiplier A, (t) and the function n can
have the first kind of discontinuity at the point ¢ w 4.

Substituting into the equality (2.11) Expressions (2.1) and (2.2) there
results the relationship

0¥ (1) Bt (1) =17 (1) B7(4) (3.4)

Since g*> 0, the values of n* (1) and n~(¢) are of the same sign. At
the point ¢ = ¢; there 18 no change of regimes Bnd if g* (Q - a;, then
8~ (¢y) = By~while for g*(¢;) = g:* we will get 8~(¢;) =8y .

Let us examine the case of given initiasl and final positions of the rocket
by the relations

r{0)y=r°, v {0) = v°, M (0) = A7, to = (0) {3.5)
The g functional 1sr(T)mrT’ v(T)=v" (3.6)
J=J[M(T), T} (3.7
The ¢ functlon is represented by the equality
@ =J 4 p," (r (0) —1°) + p° (V(0) — Vv°)+p,, (M (0) — M°) +
+ pto + pr (r (T) — 1T} - p, (v(T) —v7) (3.8)
The first group of relationships in (2.8) and the first function in (2.9)
derive Formulas
A0)=p" A0 =py" A, (0)=p," (H) =—p, (3.9)

80 that instead of seeking the multipliers Py Pey By Pt, we can compute
the initial values of the corresponding functions.

On the basls of the second group of conditions in {2.8) and the second
equality in (2.9) we get

Ap{T) = — py, Ay (T) = — Py

Integrating Equations {2.4) and {2.6) with these relationships taken into
account, we willl obtain

lri {ty=—ppn xvlt {ty=pp @ —T)—pe
Let us construct now the derivative n* and find

LA e e -0 3.10
| AE e, % M‘—MCK’" e (8.10)

The substitution of A, (2) into these expressions yields
e S lpepy—p2(t—T e & pppe — 0,2t — T
1 T [pr-po—0r%( 18 n F iy lerpe — 02 { |
(3.4

Here p, ls the length of the vector p, , and
Ay = V?vg““‘ 2pp-pp(t—T) 4 p2 {1t ,_,'T)z

Formulas”(3.11) show that for p,# 0 the derivative n°' cannot have more
than one zero in the interval ¢, C:<7. If n*= 0 and n = 0 , then at the
neighboring points n ¥ O . Therefore, the function n can become zero at
g finite number of points in the interval ;, < :<C7; at all other points it

8 nonzeroc.

Since the left and right reglons of the function n at a point ¢ = ¢,
have the same signs and its derivative has no more than a single gero, the
function n itself can have no more than two zeros. Thus, in specifying
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the end values by the equalities (3.5) and (3.6}, the control parameter in
the optimum regime can assume only its boundary values pw g,% , Or pim Ba¥.
The change of the regime, i.e. the change of the control parameter from

8 =8, to B = B, or conversely can occur only when n =0 . There can be

no mare than two corresponding instants of time. In addition, there 1s a point
of discontinuity ¢ = t, in the right-hand parts of the equations of motion
where the control parameter changes from g,* to 8,~ or from 82 to By .

4, Vertical motions of the rooket. In the absence of drag the equations
for the vertical motion of the rocket are

- (4.1}
wr— B e, w— 8T
e TE=O MM,

Here 2 1s the vertical coordinate, w the vertical velocity. The end
conditlons will be specified by

+g=0, oyt 0, ME BT -

{0 =2, w0)=w", M{0)=M°, ¢, =z{T)—:z7 =0 (4.2)
We will consider the problem of fuel cansumption minimization. Then
= — M(T) {4:3)
Utilizing the above derived functions we obtain Equations
byt at e T .
My — R, =0, AT =0, AT —(_U*)" hpt =0, XA, wmkw = ()
{(4.4)
+
—}CF }"w*-_—)"»ﬁ MHB+ (23% —B1F —3) =0
= a7, e e TR BT T ) = 0, Bt =0
and the end conditions for the )} multipliers
A (T)=—~py  Ap(T)=0, 2, (T)=1 {%.5)
Intaddition, there will exist the equality (//), == 0. For the n functions
we ge ot i = ; . .
= NG At —R, 5 N = RTE— T Ay — A, (4.6}
and the Weierstrass inequality will be of the form (n3)" > (n3*)".
The derivatives n° are
b g RS Y 4.7
" e 1z o=, (4-7)

The Erdmann-Welerstrass conditlions for the point of discontinuity in the
right-hand part of the equations of motion are expressed as follows:

Ayt () — A () =0, At (B} — by (1) =0
Ay — AT () v =qQ, (Iﬁ)tx"“(H_)tx =0
The corresponding condltions for the points of discontinuity of the con-

trol parameters are equivalent to the requirement of continuity for the
multipliers A,(Z), A.(f), ~, (¢t} and the funetion # .

Integrating Equations (4.4) under the conditions (4.5), there results
Ay =Py, Ay =—p;(t—T) (4.9)

Substituting 1, into the formula for =n’', we see that this derivative
does not change sign in the interval i, <<t < 7. Consequently, the =n fume~

tion cannot have more than one zero in this interval, At all other points
we will have n ¢ 0 . For ; = * {(n {i*) = () the change of regimes occurs.

Let us examine the right end of the optimum trajectory. Substituting
t = T 1into the second formula in (4.6) and utilizing the equalities (4.%4)

%
e 8e N Ty = —r,F (T)=—1 <0 {4.10)

(4.8)
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Therefore, the optimum regime ends when

BE(T) =R (4.11)
The second characteristic of the right end of the trajectory 1s found
with the ald of the eguality 7 = 0 , Substituting ¢ = T 1into 1t we get
+
(HE)p = 2,E (M) w™ (T) =8 (T)=0, o w™(T)= —%
4
For ﬁft=: 0 the above derived results simplity and yleld the relation-
ships B+ (T) = 0, wt (T) = 0.
For two-stage rockets of this type there can be the following optimum

regimes:
_ (B O<esr) {4.12)
FP=10 (@pr<t<m)

Bam (L <CEC1H) (4.13)
0 (*<t<T)

The first one corresponds to the case when the delivery of the rocket to
the given helght : (T) == ;¥ with velocity w(T) = O can be achleved with
the ald of the first stage fuel supply; the second uses the powerplant of
the second stage.

The optimum regimes can be constructed without determining the Lagrange
multipiers. This requires finding the solution of the equations of motion
for the values of 8 given by the relations (4.12) or (4.13) such that for
t = T the equalities :z(7) = zT'" and w (T) = 0 would be satisfied,

" Bt (O<CECh)
|
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